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Abstract. In one space dimension, the phenomenological sedimentation-consolidation model reduces to an
initial-boundary value problem (IBVP) for a nonlinear strongly degenerate convection-diffusion equation with
a non-convex, time-dependent flux function. The frequent assumption that the effective stress of the sediment
layer is a function of the local solids concentration only which vanishes below a critical concentration value
causes the model to be of mixed hyperbolic-parabolic nature. Consequently, its solutions are discontinuous and
entropy solutions must be sought. In this paper, first a (short) guided visit to the mathematical (entropy solution)
framework in which the well-posedness of this and a related IBVP can be established is given. This also includes
a short discussion of recent existence and uniqueness results for entropy solutions of IBVPs. The entropy solution
framework constitutes the point of departure from which numerical methods can be designed and analysed. The
main purpose of this paper is to present and demonstrate several finite-difference schemes which can be used
to correctly simulate the sedimentation-consolidation model in civil and chemical engineering and in mineral
processing applications, i.e., conservative schemes satisfying a discrete entropy principle. Here, finite-difference
schemes of upwind type are considered. To some extent, also stability and convergence properties of the proposed
schemes are discussed. Performance of the proposed schemes is demonstrated by simulation of two cases of batch
settling and one of continuous thickening of flocculated suspensions. The numerical examples focus on a detailed
error study, an illustration of the effect of varying the initial datum, and on simulation of practically important
thickener operations, respectively.

Key words: sedimentation, flocculated suspension, degenerate parabolic equation, entropy solution, finite-
difference scheme

1. Introduction

In this contribution, we consider the quasilinear strongly degenerate parabolic equation

∂u

∂t
+ ∂g(u, t)

∂x
= ∂2A(u)

∂x2
, (1)

where

A(u) :=
∫ u

0
a(s) ds, a(u) ≥ 0, g(u, t) := q(t)u+ f (u),

on a cylinder QT := �× T , � := (0, 1), T := (0, T ), T > 0. We allow that a(u) vanishes
on an interval [0, uc] of solution values, where Equation (1) is of hyperbolic type, and that
a(u) is discontinuous at u = uc.
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Equation (1) and these assumptions are motivated by the model of sedimentation-consoli-
dation processes of flocculated suspensions presented in [1, 2]. In this model, f (u) = fbk(u)

denotes the Kynch batch-flux density function, q(t)u is a convective flux related to the dis-
charge control, and the diffusion coefficient a(·) accounts for compressibility effects.

We consider two different initial-boundary-value problems. Problem A consists of Equa-
tion (1) together with a given initial distribution of solution values, a Dirichlet boundary
condition at one boundary, and a particular nonlinear flux condition at the second. This prob-
lem has been studied previously by Bürger and Wendland [3] and recently by Bürger et al.
[4]. The second IBVP, Problem B, is obtained from Problem A if the Dirichlet boundary
condition is replaced by a second flux boundary condition. These boundary conditions are
stated precisely in Section 2.1.

Problem B as a variant of Problem A has been included in the more recent analysis [4].
In the context of the sedimentation-consolidation model, it is assumed in Problem A that a
concentration value can be directly prescribed at x = 1 and that at x = 0 the total volumetric
solids flux g(u, t)+ ∂A(u)/∂x is reduced to its convective part q(t)u. The alternative formu-
lation, Problem B, stipulates that at x = 1 the total volumetric solids flux is prescribed as a
‘feed flux’ �(t). In both cases, we assume that an initial concentration distribution u0(x) is
known. We come back to this model in Section 4.

It is well known that, due to both the degeneracy of the diffusion coefficient a(u) and to
the nonlinearity of the flux density function f (u), solutions of Equation (1) are in general
discontinuous and have to be considered as entropy solutions. A numerical scheme that ap-
proximates entropy solutions of Problems A or B should therefore have the built-in property to
reproduce these discontinuities appropriately without the necessity to track them explicitly, i.e.
the scheme should be shock capturing. Moreover, an obvious requirement is that the scheme
should approximate (converge to) the correct (entropy) solution of the problem it is trying to
solve. This clearly rules out classical schemes based on naive finite differencing for strictly
parabolic equations, which otherwise work well for smooth solutions, see [5]. It is the purpose
of this paper to present examples of working finite-difference schemes having all these desired
properties and which are moreover easy to implement.

We emphasize that the main purpose of this paper is to present and demonstrate numerical
methods that can be used by the practitioners in chemical and civil engineering and mineral
processing to simulate sedimentation-consolidation processes. However, the appropriate de-
sign of numerical methods in the present context is intimately connected to the mathematical
framework in which the models are well posed. Therefore we devote Section 2 to a discussion
of the mathematical (entropy solution) framework for Problems A and B. In particular, we
outline recent existence and uniqueness results for entropy solutions of Problems A and B
which take into account the fact that we admit a discontinuous diffusion coefficient a(·).
This requires a new approach for the uniqueness proof, since the available proof by Wu and
Yin [6] presupposes that a(·) is Lipschitz continuous. In fact, most, but not all, constitutive
equations suggested for the sedimentation-consolidation model do lead to a discontinuous
diffusion coefficient a(·).

Equipped with the well-posedness of the entropy solution, we describe in Section 3 fi-
nite difference schemes for their numerical computation, and include some recent stability
and convergence results for the initial-value problem of Equation (1). Finally, we describe
numerical schemes for the IBVPs A and B of the sedimentation-consolidation model.

In Section 4, we come back to that application. We first briefly outline the basic model
assumptions and show that a technical assumption on Problem B will usually be satisfied. We
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then present numerical solutions of three different test cases. In Section 4.2.1, we simulate
a batch sedimentation process and perform an L1 error study of the numerical schemes. In
Section 4.2.2, we keep the discretization parameters fixed but vary the initial datum. In both
paragraphs, which correspond to batch settling (q ≡ 0 and � ≡ 0), the model parameters are
chosen in such a way that numerical results can be compared to experimental data. Finally, in
Section 4.2.3, we simulate a hypothetical sequence of thickener operations by approximating
an entropy solution of Problem B with q 
≡ 0 and a varying feed flux �(t). Conclusions that
can be drawn from this paper are summarized in Section 5.

2. Mathematical theory

2.1. ADDITIONAL ASSUMPTIONS AND INITIAL AND BOUNDARY CONDITIONS

In addition to the assumptions stated in Section 1, we require the flux density function f (·)
to be at least Lipschitz continuous with supp f ⊂ [0, 1] and f (u) ≤ 0. The function q(·) is
assumed to be nonpositive and Lipschitz continuous. Moreover, we require that TVT (q) <∞
and TVT (q ′) <∞.

For Problem A, the initial and boundary conditions are

u(x, 0) = u0(x), x ∈ �; (2)

u(1, t) = ϕ1(t), t ∈ T ; (3)(
f (u)− ∂A(u)

∂x

)
(0, t) = 0, t ∈ T . (4)

The second IBVP, Problem B, is obtained from Problem A if the boundary condition (3) is
replaced by(

g(u, t)− ∂A(u)

∂x

)
(1, t) = �(t), t ∈ T . (5)

2.2. PRELIMINARIES AND NOTION OF ENTROPY SOLUTION

We seek solutions u in the space BV (QT ) of all functions v ∈ L∞(QT ) for which there exist
constants K1,K2 > 0 such that the inequalities∫ T−�t

0

∫ 1

0
|v(x, t +�t)− v(x, t)| dt dx ≤ K1�t,

∫ T

0

∫ 1−�x

0
|v(x +�x, t) − v(x, t)| dt dx ≤ K2�x

hold uniformly for sufficiently small �x,�t > 0.
Before introducing the notion of entropy solution for Problems A and B, respectively, we

need to state some necessary assumptions on the coefficients of Equation (1) as well as the
initial and boundary data. To this end, let ωε be a standard C∞ mollifier with supp ωε ⊂
(−ε, ε) and define for ε > 0



148 R. Bürger and K. Hvistendahl Karlsen

aε(u) =
(
(a + ε) ∗ ωε

)
(u) and Aε(u) :=

∫ u

0
aε(s) ds.

For Problem A, the assumptions on the initial and boundary data can be stated as follows:

ϕ1(t) ∈ [0, 1] for t ∈ T and ϕ1 has a finite number of local extrema; (6)

u0 ∈
{
z ∈ BV (�) : z(x) ∈ [0, 1];

∃M > 0 : ∀ε > 0 : TV

(
∂Aε(z)

∂x

)
< M

}
,

(7)

while for Problem B we require that (7) is valid and that either � ≡ 0 or that

∃ξ,Mg > 0 : ∀u ∈ suppf : ξa(u) ≥ q(t) + sup
v∈suppf

f (u)− f (v)

u− v
+Mg. (8)

For differentiable flux-density functions, condition (8) was first used by Wu [7] to show exis-
tence of generalized solutions of a variant of Problem B under stronger regularity assumptions
on the flux density function g(·, t) and on the diffusion coefficient a(·). An immediate conse-
quence of assumption (8) is that solution values u ≤ uc, for which Equation (1) is hyperbolic
and which therefore propagate along characteristics, propagate downwards, i.e., away from
the boundary x = 1. The same holds for a discontinuity between two approximate limits u+
and u− of a generalized solution of Equation (1) with 0 ≤ u−, u+ < uc if we recall that its
propagation velocity σ (u−, u+) is given by the Rankine-Hugoniot condition [8]

σ (u−, u+) = q(t)+ f (u+)− f (u−)
u+ − u−

.

Consequently, condition (8) ensures that no hyperbolic characteristics or shocks hit the bound-
ary x = 1, on which the total flux is prescribed according to boundary condition (5). This
avoids oscillations of u(1, ·) as a function of t that otherwise occur.

We mention that Wu [7] derived condition (8) from the stronger assumption

∂

∂u
g(u, t) = q(t)+ f ′(u) < 0 for all 0 ≤ u ≤ uc, t ≥ 0, (9)

i.e., he actually directly prescribed what we formulated as a consequence of (8). However,
as we shall show in Section 4, in the context of the sedimentation-consolidation model only
condition (8) is usually satisfied, in contrast to the more restrictive condition (9).

We need the assumption (7) on u0 to ensure the existence of a solution from BV (QT ).
However, if a(·) is sufficiently smooth (i.e., at least continuous), then it is sufficient to require
that TV�(∂xu0) (and not TV� (∂xAε(u0))) is finite.

We now turn to the definitions of entropy solutions of Problem A and B, respectively. We
recall from [4] that a function u ∈ L∞(QT ) ∩ BV (QT ) is an entropy solution of Problem A
if the following conditions are satisfied:

∂A(u)

∂x
∈ L2(QT ); (10)

f. a. a. t ∈ T , γ0

(
f (u)− ∂A(u)

∂x

)
= 0; (11)
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f. a. a. x ∈ �, lim
t↓0

u(x, t) = u0(x), (12)

and if for all nonnegative test functions ϕ ∈ C∞
(
(0, 1] × T

)
with supp ϕ ⊂ (0, 1] × T and

for all k ∈ R∫∫
QT

{
|u− k|∂ϕ

∂t
+ sgn(u− k)

[
g(u, t)− g(k, t)− ∂A(u)

∂x

]
∂ϕ

∂x

}
dt dx

+
∫ T

0

{
−sgn (ϕ1(t)− k)

[
g(γ1u, t)− g(k, t)− γ1

∂A(u)

∂x

]
ϕ(1, t)

+ [sgn(γ1u− k)− sgn(ϕ1(t)− k)
] [

A(γ1u)− A(k)
] ∂ϕ
∂x

(1, t)

}
dt ≥ 0.

(13)

Similarly, a function u ∈ L∞(QT )∩BV (QT ) is an entropy solution of Problem B if (10) and
(12) are valid, if for all nonnegative ϕ ∈ C∞0 (QT ) and for all k ∈ R the inequality∫∫

QT

{
|u− k|∂ϕ

∂t
+ sgn(u− k)

[
g(u, t)− g(k, t)− ∂A(u)

∂x

]
∂ϕ

∂x

}
dt dx ≥ 0 (14)

holds, and if

γ1

(
g(u, t)− ∂A(u)

∂x

)
= �(t) for almost all t ∈ T . (15)

Here, γ0u := (γ u)(0, t) and γ1u := (γ u)(1, t) denote the traces of u. Entropy inequalities
like (13) go back to the pioneering papers of Kružkov [9] and Vol’pert [10] for first order
equations and Vol’pert and Hudjaev [11] for second-order equations.

We now briefly discuss jump and entropy boundary conditions that can be derived from the
integral inequality (13), see [6, 8] for details. We first note that if u is an entropy solution of
Problem A or B, then a discontinuity at a jump point (x, t) ∈ QT between two approximate
limits (with respect to the normal of the jump) u+ and u− can exist only for 0 ≤ u−, u+ ≤ uc,
and that for 0 ≤ u−, u+ < uc, the well-known Rankine–Hugoniot condition and Oleı̆nik’s
jump entropy condition E are satisfied. If one assumes in addition more regularity of the
diffusion coefficient a(·), for example Lipschitz continuity, then the propagation velocity of a
discontinuity with 0 ≤ u+ < u− = uc is given by

σ = 1

u+ − uc

[
g(u+, t)− g(uc, t)+ lim

ξ↑x
∂A(u)

∂x

]
,

and such a discontinuity is admissible, i.e., a shock, if the jump entropy condition

∀k ∈ [u+, uc] : g(u+, t)− g(k, t)

u+ − k
≤ s ≤ 1

k − uc

[
g(k, t)− g(uc, t)+ lim

ξ↑x
∂A(u)

∂x

]

holds. Analogous conditions hold for 0 ≤ u− < u+ = uc.
Finally, we mention that condition (13) is satisfied if and only the integral inequality (14)

holds for all nonnegative ϕ ∈ C∞0 (QT ) and k ∈ R; if a(s) = 0 for all s between φ1(t)

and (γ1u)(1, t), and if the trace v = (γ1u)(1, t) satisfies the following entropy boundary
inequality:

∀k ∈ R : [sgn(v − k)− sgn (φ1(t)− k)
] [

g(v, t)− g(k, t)− γ1
∂A(u)

∂x

]
≥ 0. (16)
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This means that we cannot assume that the trace of entropy solution of Problem A satisfies
the boundary condition (3) in a pointwise sense wherever φ1(t) ≤ uc; rather, we can then
only require that (γ1u)(1, t) belongs to the (time-dependent) set of all values v for which
(16) is satisfied. The concept of entropy boundary conditions associated with this set-valued
reformulation goes back to the analysis of Bardos, Le Roux and Nédélec [12] and Dubois and
Le Floch [13] for first order equations.

2.3. EXISTENCE AND UNIQUENESS RESULTS

We now briefly summarize some recent results on the existence and uniqueness of entropy
solutions of Problems A and B, and state a new regularity result for the integrated diffusion
coefficient for entropy solutions of Problem B. For details we refer to [4].

For both problems, existence of entropy solutions can be shown by the vanishing viscosity
method. To this end, we consider the regularized parabolic IBVPs

∂uε

∂t
+ ∂

∂x
(qε(t)u

ε + fε(u
ε)) = ∂2Aε(u

ε)

∂x2
, (x, t) ∈ QT , (17)

uε(x, 0) = uε
0(x), x ∈ �, (18)

uε(1, t) = ϕε
1(t), (19)(

fε(u
ε)− ∂Aε(u

ε)

∂x

)
(0, t) = 0, t ∈ (0, T ], (20)

and

∂uε

∂t
+ ∂

∂x
(qε(t)u

ε + fε(u
ε)) = ∂2Aε(u

ε)

∂x2
, (x, t) ∈ QT , (21)

uε(x, 0) = uε
0(x), x ∈ �, (22)(

gε(u
ε, t)− ∂Aε(u

ε)

∂x

)
(1, t) = �ε(t), (23)

(
fε(u

ε)− ∂Aε(u
ε)

∂x

)
(0, t) = 0, t ∈ (0, T ], (25)

where the functions q, f , u0, ϕ1 and � have been replaced by particular smooth approxima-
tions for each problem that ensure compatibility conditions and existence of smooth solutions.
It can then be shown that there exist constants M1 to M5 independent of ε such that the smooth
solutions of (17)–(20) satisfy

‖uε‖L∞(QT ) ≤ M1,

∥∥∥∥∂uε

∂x
(·, t)

∥∥∥∥
L1(�)

≤M2 ∀t ∈ T ,

∥∥∥∥∂uε

∂t

∥∥∥∥
L1(QT )

≤ M3, (25)

while those of Problem (21)–(24) satisfy

‖uε‖L∞(QT ) ≤ M1,

∥∥∥∥∂uε

∂t
(·, t)

∥∥∥∥
L1(�)

≤M4 ∀t ∈ T , (26)

and, in the case where � ≡ 0,
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∂x
(·, t)

∥∥∥∥
L1(�)

≤ M5 ∀t ∈ T , (27)

and, in the case where (8) holds,∥∥∥∥∂uε

∂x

∥∥∥∥
L1(QT )

≤ M5. (28)

Estimates (25) imply that the family {uε}ε>0 of solutions of Problem (17)–(20) is bounded in
W 1,1(QT ) ⊂ BV (QT ). Hence there exists a sequence ε = εn ↓ 0 such that {uεn} converges
in L1(QT ) to a function u ∈ L∞(QT ) ∩ BV (QT ). The same compactness assertion holds for
the family of solutions {uε}ε>0 of Problem Bε.

To prove that u is an entropy solution of Problem A or B, it has to be shown that the
diffusion function A(u) has the required regularity. In both cases, it is fairly easy to show that∥∥∥∥∂Aε(u

ε)

∂x

∥∥∥∥
L2(QT )

≤ M6,

for some constant M6 > 0 independent of ε. Therefore, passing if necessary to a subsequence
as ε ↓ 0, Aε(u

ε)→ A(u) strongly in L2(QT ) and

∂Aε(u
ε)

∂x
→ ∂A(u)

∂x
weakly in L2(QT ).

It is now easy to verify that the limit function u satisfies (11) to (13) or (12), (14) and (15),
respectively. For the case of Problem B, the a priori regularity statement of A(u) can be
considerably improved; namely, we can indeed show that A(u) belongs to the Hölder space
C1,1/2(QT ) and that Aε(u

ε) converges uniformly to A(u), see [4] for details.
Finally, consider two entropy solutions u and v either of Problem A or of Problem B with

initial data u0 and v0, respectively. Then the inequality

‖u(·, t)− v(·, t)‖L1(�) ≤ ‖u0 − v0‖L1(�) (29)

is valid, which immediately implies that both problems have at most one entropy solution.
This can be shown by the ‘doubling of the variables’ device introduced first by Kružkov [9] as
a tool for proving (29) for the entropy solution of scalar conservation laws and very recently
extended by Carrillo [14] to a class of degenerate parabolic equations. This recent extension
is adopted in [4] to Problems A and B and leads to the inequality∫∫

QT

{
|u− v|∂ϕ

∂t
+ sgn(u− v)

[
g(u, t)− g(v, t)

−
(
∂A(u)

∂x
− ∂A(v)

∂x

)]
∂ϕ

∂x

}
dt dx ≥ 0,

valid for all nonnegative test functions ϕ ∈ C∞0 (QT ), from which stability and uniqueness can
be obtained as in [4], see also [8].

Summing up, we have the following theorem:

THEOREM 1. [4] Under the assumptions specified in Section 1, both initial-boundary-value
problems A and B have exactly one entropy solution u ∈ BV (QT ).
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It should be pointed out that the new stability and uniqueness proof detailed in [4] is not
based on a jump condition, in contrast to the uniqueness proof by Wu and Yin [6]. In fact, it
is not clear whether a jump condition can be derived with integrated diffusion functions A(u)

that are only Lipschitz continuous. Moreover, it has been possible to derive jump conditions
only in the 1-D case so far, while the new uniqueness proof can also be extended to multi-
dimensional boundary-value problems.

3. Finite-difference schemes

In this section we present some numerical methods for degenerate parabolic problems. In
several papers, we have elaborated on numerical methods for the sedimentation-consolidation
model based on ‘operator splitting’ [2, 15, 16, 17]. For a general introduction to operator
splitting methods and a long list of relevant papers, we refer to the lecture notes [18]. In this
paper, our main focus will be on finite difference schemes. The material in this section is based
on a series of theoretical papers by Evje, Karlsen, and Risebro [5, 19, 20, 21, 22].

3.1. INITIAL-VALUE PROBLEM

To focus on the main ideas, we consider here the initial value problem

∂u

∂t
+ ∂f (u)

∂x
= ∂2A(u)

∂x2
, u(x, 0) = u0(x), (30)

where (x, t) ∈ QT = R × (0, T ), f = f (u) and A = A(u) are Lipschitz continuous
functions with A(·) nondecreasing, and u0 ∈ L1(R) ∩ L∞(R). We will return to the full
sedimentation-consolidation model towards the end of this section.

Following [23], we say that u is an entropy solution of (30) if

u ∈ L1(QT ) ∩ L∞(QT ) ∩ C(0, T ;L1(R)), (31)

A(u) ∈ L2(0, T ;H 1(R)), (32)

f. a. a. x ∈ R, lim
t↓0

u(x, t) = u0(x), (33)

and for all nonnegative ϕ ∈ C∞0 (QT ) and for all k ∈ R the following inequality holds:∫∫
QT

{
|u− k|∂ϕ

∂t
+ sgn(u− k)

[
f (u)− f (k)− ∂A(u)

∂x

]
∂ϕ

∂x

}
dt dx ≥ 0. (34)

Note that we do not need u ∈ BV (QT ) for the initial-value problem (30) to be well-
posed. The reason that this is needed for the sedimentation-consolidation model (cf. Section 2),
is only to ensure the existence of the boundary traces γ0u, γ1u. The well-posedness of the
entropy solution of (30) is proved in [22]. In that paper, also the multi-dimensional initial
problem with a general flux function of the type f = f (x, t, u) is treated.

As is shown in [5, 21], numerical methods based on naive finite-difference formulation
of the diffusion term may be adequate for smooth solutions but can give wrong results when
discontinuities are present.

It turns out that central differencing of the second-order term and upwind differencing of
the convective flux is preferable, in order to achieve conservative discretization of both terms.
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As is well known, upwind differencing stabilizes profiles which are liable to undergo sudden
changes, i.e., discontinuities and other large gradient profiles. Therefore upwind differencing
is perfectly suited for the treatment of the sedimentation-consolidation model.

3.1.1. First-order scheme
Select a mesh size �x > 0, a time step �t > 0, and an integer N so that N�t = T , and
denote the value of the difference approximation at (xj , tn) = (j�x, n�t) by un

j , where j ∈ Z

and n = 0, . . . , N . In this paper, we use the so-called Engquist-Osher (or generalized upwind)
scheme

un+1
j − un

j

�t
+ f EO(un

j , u
n
j+1)− f EO(un

j−1, u
n
j )

�x
= A(un

j+1)− 2A(un
j )+ A(un

j−1)

(�x)2
, (35)

where the numerical flux f EO(un
j , u

n
j+1) := f +(un

j )+ f −(un
j+1) is given by

f +(u) = f (0)+
∫ u

0
max(f ′(s), 0) ds, f −(u) =

∫ u

0
min(f ′(s), 0) ds.

Notice that the functions f +(·) and f −(·) are Lipschitz continuous and, respectively, nonde-
creasing and nonincreasing. Moreover, the difference scheme (35) is consistent since

f EO(u, u) = f +(u)+ f −(u) = f (u), ∀u ∈ R. (36)

Observe that, for a monotone flux function f , the Engquist-Osher flux takes the simplified
form f EO(un

j , u
n
j+1) ≡ f (un

j ) if f ′ > 0 and f EO(un
j , u

n
j+1) ≡ f (un

j+1) if f ′ < 0, which
is the Godunov (or upwind) numerical flux. For a discussion of the relation between the
Godunov and Engquist-Osher schemes, see [25]. For stability reasons, we always assume
that the following CFL condition holds:

CFL := Lf

�t

�x
+ 2LA

�t

(�x)2
≤ 1, (37)

where Lf and LA denote the Lipschitz constants of f (·) and A(·), respectively.
We remark that difference schemes for multi-dimensional convection-diffusion equations

with variable (nonsmooth) coefficients are treated in [22], see also [5] for the case of source
terms.

3.1.2. A convergence result
We next discuss the stability and convergence properties of the scheme (35). To this end, let
u� : QT → R, � = (�x,�t), be the interpolant of degree zero associated with the discrete
data points {un

j }:
u�(x, t) = un

j for xj−1/2 ≤ x < xj+1/2 and tn ≤ t < tn+1,

where xj := j�x and tn := n�t for j ∈ Z and n = 0, . . . , N − 1. For technical reasons, we
extend the definition of u� by the value 0 for all t > T . Regarding the sequence {u�}, we have:

THEOREM 2. [22] The sequence {u�} of difference approximations converges in L1
loc(QT )

as � ↓ 0 to the unique entropy solution u of (30).

Sketch of Proof. We follow [22] closely in this proof, see also [5].
First, it is not difficult to show a uniform L∞ bound:
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‖u�(·, t)‖L∞(R) ≤ C1 ∀t ∈ (0, T ), (38)

for some constant C1 > 0 independent of �. Next, one can easily show that the scheme (35)
is L1 contractive; i.e., if {un

j } and {vn
j } are two finite-difference solutions with data {u0

j } and
{v0

j }, respectively, then∑
j∈Z

|un
j − vn

j | ≤
∑
j∈Z

|u0
j − v0

j |.

Since u0 ∈ L1(R), it then follows that there exists a spatial modulus of continuity function ν

such that

‖u�(· + y, t)− u�(·, t)‖L1(R) ≤ ν(|y|), ∀y ∈ R, y → 0, ∀t ∈ (0, T ), (39)

where the modulus ν(·) is independent of �. We recall that a function ν : [0,∞) → [0,∞)

is a called modulus of continuity if it is continuous and nondecreasing with ν(0) = 0.
One can now use the difference scheme (35), the spatial estimate (39) and Kružkov’s

interpolation lemma (see [22]) to show that there exists a temporal modulus of continuity
ω such that

‖u�(·, t + τ)− u�(·, t)‖L1(R) ≤ ω(τ), ∀τ ≥ 0, τ → 0, ∀t ∈ (0, T ), (40)

where the modulus is again independent of �.
Using the three estimates (38)–(40) and Kolmogorov’s compactness lemma, it is thus

possible to select a subsequence that converges in L1
loc(QT ) to a limit u satisfying (31) and

(33).
The next step is to show that the limit u satisfies (32). To this end, one proves the following

estimate:

‖A(u�(· + y, · + τ))− A(u�(·, ·))‖L2(QT )
≤ C2

(|y| + √τ
)
, (41)

for y ∈ R and τ ≥ 0 with y, τ → 0. Here, C2 > 0 is a constant independent of �. An
application of Kolmogorov’s compactness lemma then gives

A(u�)→ A in L2
loc(QT ) as �→ 0 and A ∈ L2(0, T ;H 1(R)).

Equipped with strong convergence u� → u, we conclude that A = A(u) and thus (32) holds.
We would like to mention that the proof of (41) is based on deriving so-called weak BV

estimates. The proof is complicated by the fact that u0 does not belong to BV (R). Moreover,
to derive (41), we actually need to impose a slightly stronger CFL condition than (37). We
will not go into further details about this, but refer instead to [22].

Finally, convergence of {u�} to the correct physical solution of (30) follows from the
consistency of the scheme (see (36)) and the cell entropy inequality

|un+1
j − k| − |un

j − k|
�t

+�−
(
f EO(un

j ∨ k, un
j+1 ∨ k)− f EO(un

j ∧ k, un
j+1 ∧ k)

)
−�−�+|A(un

j )− A(k)| ≤ 0, ∀k ∈ R,

(42)

with the standard notation u ∨ v := max(u, v), u ∧ v := min(u, v), �−uj := uj − uj−1, and
�+uj := uj+1 − uj . This conclusion essentially mimics the proof of the Lax-Wendroff theo-
rem. The discrete entropy inequality (42) is in turn an easy consequence of the monotonicity
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of the scheme. The reader is referred to [22] for further details on the proof of Theorem 2. �
We point out that if, we assume that u0 is sufficiently smooth (i.e., at least TV�

(f (u0)− ∂xA(u0)) <∞), then we also have u ∈ BV (QT ) and {A(u�)} converges uniformly
on compact sets K ⊂ QT as � ↓ 0 to A(u) ∈ C1,1/2(QT ), see [5] for details. Moreover,
within the BV framework, one can also analyse difference schemes for the more general case
of doubly nonlinear degenerate parabolic equations, see [19].

3.1.3. Semi-implicit and implicit schemes
In many applications it is desirable to avoid the explicit stability restriction (37) associated
with (30). One way to overcome this restriction is of course to use the semi-implicit scheme

un+1
j − un

j

�t
+ f EO(un

j , u
n
j+1)− f EO(un

j−1, u
n
j )

�x
= A(un+1

j+1)− 2A(un+1
j )+ A(un+1

j−1)

(�x)2
, (43)

with the (less restrictive) CFL condition Lf�t/�x ≤ 1, or the ‘CFL free’ implicit scheme

un+1
j − un

j

�t
+f EO(un+1

j , un+1
j+1)− f EO(un+1

j−1, u
n+1
j )

�x

= A(un+1
j+1)− 2A(un+1

j )+ A(un+1
j−1)

(�x)2
.

(44)

Note that (43) and (44) involve the solution of nonlinear equations. Following [21, 22], one
can prove that these nonlinear equations have a unique solution and that the schemes (43) and
(44) converge to the unique entropy solution of (30). The schemes (43) and (44) will not be
used in this paper.

3.1.4. Second-order scheme
The upwind scheme (and all other monotone schemes) are at most first-order accurate, which
leads to poor accuracy in regions where the exact solution is smooth. To overcome these
problems, we use the generalized MUSCL (Variable Extrapolation) idea of van Leer [24,
25] to formally upgrade the Engquist-Osher scheme (35) to second-order accuracy. In the
context of conservation laws, Van Leer observed that one can increase the spatial accuracy by
replacing piecewise constant data of the Riemann problem with piecewise linear data. To this
end, we introduce a piecewise linear un(x) defined by

un(x) = un
j + snj (x − xj ), x ∈ (xj−1/2, xj+1/2),

where snj denotes a suitable slope constructed from the available data {un
j }. In regions where

snj = 1, the reconstruction is linear and the truncation error is O((�x)2). In regions where
snj = 0, the reconstruction used is piecewise constant and the truncation error is O(�x). The
slopes are limited to enforce the monotonicity of the reconstruction. The-second order scheme
is identified by the choice of a limiter function that defines the slopes. There exists a variety of
possible limiters, see, e.g., [26] for a discussion of limiters. Here we have used the so-called
θ - limiter

snj = MM

(
θ
un
j − un

j−1

�x
,
un
j+1 − un

j−1

2�x
, θ

un
j+1 − uj

�x

)
, θ ∈ [0, 2],

where MM is the Min-Mod function
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MM(a, b, c) =




min(a, b, c), if a, b, c > 0,

max(a, b, c), if a, b, c < 0,

0, otherwise.

The next step is to extrapolate the data to the boundaries of each cell, yielding the extrap-
olated values

uL
j := un

j −
�x

2
snj , uR

j := un
j +

�x

2
snj . (45)

The second-order upwind scheme now takes the form

un+1
j − un

j

�t
+ f EO(uR

j , u
L
j+1)− f EO(uR

j−1, u
L
j )

�x
= A(un

j−1)− 2A(un
j )+ A(un

j+1)

(�x)2
. (46)

Although the proof is more difficult than in the first-order case, it can be shown that also the
second-order scheme satisfies a discrete entropy condition and that it converges to the unique
entropy solution of the problem [20].

We mention that to obtain a second-order time discretization (in addition to second-order
spatial discretization), one can replace the forward Euler time discretization by a linear multi-
step method or by a Runge-Kutta type of discretization. We will not pursue this further here.

3.2. INITIAL-BOUNDARY-VALUE PROBLEMS

Let us now turn to the description of the difference schemes for the full sedimentation-
consolidation model. These difference schemes are implemented and demonstrated in the next
section.

We divide the interval � = (0, 1) into J subintervals of length �x = 1/J and the time
interval T = (0, T ) into N subintervals of length �t = T /N . As before, let un

j denote the
approximate solution value at (j�x, n�t). The computation starts by setting u0

j = u0(j�x)

for j = 0, . . . , J . The first-order interior scheme takes the form

un+1
j − un

j

�t
+q(n�t)

un
j+1 − un

j

�x
+ f EO

bk (un
j , u

n
j+1)− f EO

bk (un
j−1, u

n
j )

�x

= A(un
j+1)− 2A(un

j )+ A(un
j−1)

(�x)2
, j = 1, . . . , J − 1.

(47)

We assume that the following CFL condition holds:

Lg

�t

�x
+ 2LA

�t

(�x)2
≤ 1, Lg := max

t∈[0,T ]
|q(t)| + Lfbk,

where Lfbk denotes the Lipschitz constant of fbk. Introducing extrapolated values (45) for
j = 1, . . . , J − 1, the second order (in space) interior scheme takes the form

un+1
j − un

j

�t
+q(n�t)

uL
j+1 − uR

j

�x
+ f EO

bk (uR
j , u

L
j+1)− f EO

bk (uR
j−1, u

L
j )

�x

= A(un
j+1)− 2A(un

j )+ A(un
j−1)

(�x)2
, j = 1, . . . , J − 1.

(48)
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The boundary condition (4) prescribed at x = 0 is discretized by evaluating the formula (47)
for the interior scheme for j = 0 and setting(

fbk(u)− ∂A(u)

∂x

)
(0, n�t) ≈ f EO

bk (un
−1, u

n
0)−

A(un
0)− A(un

−1)

�x
= 0,

whence we obtain the updating formula for the value un
0

un+1
0 − un

0

�t
+ q(n�t)

un
1 − un

0

�x
+ f EO

bk (un
0, u

n
1)

�x
= A(un

1)− A(un
0)

(�x)2
,

which is used for both the first and second-order schemes. Note that this formulation avoids
referring to an artificial solution value un

−1. The boundary condition at x = 1 for Problem A
is implemented simply by setting un

J = ϕ1(n�t), while that for Problem B (see (5)) is
approximated by setting

q(n�t)un
J + f EO

bk (uJ , uJ+1)− A(un
J+1)− A(un

J )

�x
= �(n�t),

which yields

un+1
J − un

J

�t
+ �(n�t)− q(n�t)un

J

�x
− f EO

bk (un
J−1, u

n
J )

�x
= A(un

J−1)− A(un
J )

(�x)2
.

4. Application to the sedimentation-consolidation model

4.1. INTRODUCTION

The study of degenerate convection-diffusion equations is in part motivated by a model of
sedimentation-consolidation processes of flocculated suspensions in an idealized sedimenta-
tion vessel, which is here considered to be of height 1 [m]. In that application, u = u(x, t)

denotes the local volumetric solids concentration, q(t) ≤ 0 is the average flow velocity of the
mixture which can be controlled externally (for example by prescribing the mixture volumetric
discharge rate at x = 0), fbk(u) is a given nonlinear function relating the local solid-fluid
relative velocity to the local solids concentration, and

a(u) = −fbk(u)σ
′

e (u)

�5gu
, (49)

where �5 > 0 denotes the solid-fluid mass density difference, g is the acceleration of gravity,
and σ ′e (u) ≥ 0 is the derivative of the solid effective stress function. The material behaviour
of the suspension is thus described by the functions fbk(u) and σe(u). This sedimentation-
consolidation model is described in detail in [1, 2, 27].

The property which is of interest here is that the following behaviour of σe is usually
assumed:

σe(u)

{ = const. for u ≤ uc,

> 0 for u > uc,
σ ′e (u) :=

dσe

du

{ = 0 for u ≤ uc,

> 0 for u > uc,
(50)
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where uc is the so-called critical concentration or gel point, at which the solid flocs are as-
sumed to touch each other. From (49), (50) and the assumptions on f (u) = fbk(u) we read
off that a(u) = 0 for u ≤ uc and a(u) > 0 for u > uc wherever f (u) < 0. Most notably,
many, but not all, constitutive equations for σe imply a jump of σ ′e at u = uc, which makes
a(u) discontinuous.

It should be mentioned that the postulate of a constitutive equation of the type σe = σe(u)

follows widespread usage in the engineering literature, see [2] and the references cited therein
and recent handbooks on solid-liquid separation such as [29] and [30]. One should, however,
bear in mind that this relationship is a strong (albeit in many cases useful) simplification, and
that different approaches for σe, although altering the nature of the resulting model equation,
could possibly describe better observed consolidation behaviour. In fact, several researchers
recently proposed alternate equations for the effective solid stress function. Some of them
suggest expressing σe as an integral (with respect to height) of a new concentration-dependent
phenomenological function [31, 32] (see also [33]). It can be easily seen that in the present
model framework this will lead again to a first-oder equation, i.e. one essentially falls back to
the equation

∂u

∂t
+ ∂fbk(u)

∂x
= 0 (51)

of Kynch’s kinematic sedimentation theory [34], with all its well-known shortcomings. A
different, and to our view potentially more promising approach was advanced by Zheng and
Bagley [35, 36], who proposed an effective stress equation [35, Equation 18] that depends on
both the value of the local solids concentration and its rate of change. Thereby the necessity to
refer to a critical concentration is removed. However, the appropriate mathematical framework
in which the resulting mathematical model should be studied still remains to be explored.

We briefly come back to condition (8) for Problem B (i.e., we prescribe the total flux �(t)

at x = 1) and show that (8) is satisfied for the most practically relevant choices of the functions
fbk(·) and σe(·). First, it is easy to see that in view of q(·) ≤ 0, it is sufficient to establish (8) for
q ≡ 0. To be specific, and to focus on the main idea, we now assume that fbk(·) is differentiable
(as is the case in virtually all applications) and has a unique local minimum 0 < um < umax,
and that

σ ′e (u
+
c ) := lim

u↓uc
σ ′e (u) > 0.

Typical examples for the model functions include the Michaels and Bolger [28] flux density
function

fbk(u) = v∞u
(
1− (u/umax)

)C
, v∞ < 0, C > 1, (52)

and the ‘power law’ effective solid stress function (see e.g. [37])

σe(u) =
{

0 for u ≤ uc,

σ0 ((u/uc)
n − 1) for u > uc,

σ0 > 0, n > 1. (53)

These model functions will be used in the first and the third numerical example presented
below.

It is now easy to see that condition (9) and therefore condition (8) is satisfied in the case
that uc ≤ um. Otherwise, we have to show that (8) also holds for um < u ≤ uc, i.e., that
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ξa(u) ≡ −ξ
fbk(u)σ

′
e (u)

�5gu
≥ f ′bk(u)+Mg for um < u ≤ uc (54)

holds for suitable positive constants Mg and ξ . However, (54) can be easily established by
setting

Mg = max
u∈[um,uc]

f ′bk(u) > 0, ξ = − 2�5gucMg

fbk(uc)σe(u
+
c )

.

Note that the assumption that fbk(·) is differentiable is not essential here, i.e. we could also
admit a function fbk(·) that is only Lipschitz continuous.

4.2. NUMERICAL EXAMPLES

4.2.1. Comparison of first- and second-order schemes
For simplicity, we assume for this example that q ≡ 0 and that n ∈ N. Noting that fbk has a
minimum at um = umax/(C + 1), we easily see that

f EO
bk (u, v) =




fbk(v) if u ≤ um, v ≤ um,

fbk(u)+ fbk(v)− fbk(um) if u > um, v ≤ um,

fbk(um) if u ≤ um, v > um,

fbk(u) if u > um, v > um

(55)

and that A(u) = 0 for u ≤ uc and A(u) = A(u)−A(uc) for u > uc, where

A(u) = v∞σ0

�5gun
c
(1− (u/umax))

C un
n∑

j=1

(
j∏

6=1

n+ 1− 6

C + 6

)
((umax/u)− 1)j . (56)

Here we utilize the parameters v∞ = −2·7× 10−4 m s−1], C = 21·5, umax = 0.5, uc = 0·07,
σ0 = 1·2 [Pa] and n = 5 that have been determined for a flocculated Kaolin suspension
whose settling behaviour was studied in [38]. Simulations of the same experiment with a
slightly different set of parameters are presented in [39, 40]. Here, however, our interest is
mainly focused on the errors introduced by the first- and second-order methods.

Figure 1 shows the difference between the numerical solutions calculated with θ = 0 and
θ = 1 for the case J = 200. In addition, the errors versus J (referred to a reference solution
calculated with J = 2400 and θ = 1) at times t = 2000 [s], t = 6000 [s] and t = 10000 [s]
have been plotted in Figure 2. As expected, we see that the second-order scheme performs
better than the first-order scheme. Moreover, the accuracy of the second-order scheme seems
to depend on the limiter function, i.e., the value of θ , with θ = 1 giving the best result
in the present example. Observe that the largest difference between the first- and second-
order schemes is seen for small times (t = 2000), i.e., when the solution contains a strong
discontinuity, and that it seems to decrease as t becomes large. We believe that this is related
to accumulation error coming from the (only first-order) time integration.

In Figure 3, we show the numerical solution for �x = L/300, θ = 0·5 and CFL = 0·98
together with the measured iso-concentration lines (experimental data have been available for
t ≤ 5000 [s] only). We observe good approximation of the supernate/suspension interface,
the rising sediment layer, and of the iso-concentration line for u = 0·12. Of course, due to the
simple approach of the flux density function fbk(·) adopted here, the agreement of simulated
and measured data for the remaining iso-concentration lines is only qualitative.
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Figure 1. Numerical solution of the batch sedimen-
tation problem: non-interpolated numerical values for
J = 200 at a) t = 2000 [s], b) t = 6000 [s] and c)
t = 10000 [s], calculated by the first-order (θ = 0) and
a second-order (θ = 1) scheme.

Figure 2. Numerical solution of the batch sedimentation
problem: relative L1 errors (as given in Table 1) at a)
t = 2000 [s], b) t = 6000 [s] and c) t = 10000 [s] for
different values of θ .

4.2.2. Comparison with experimental results
We now consider settling experiments performed by Holdich and Butt [41], see also the recent
monograph by Rushton et al. [29]. In these experiments, suspensions of talc in tap water
(�5 = 1690 [kg m−3]) at various initial concentrations were allowed to settle in a column.
Concentration profiles were determined by conductivity measurements. From the published
experimental data, Garrido et al. [42] determined the following constitutive equations:

fbk(u) =
{

v∞(a2u
2 + a1u) for u ≤ uM := (3b1 − b2)/(2b2),

v∞(1− u)3/(b1 − b2u) for uM < u < u∞ := b1/b2,

σe(u) =
{

0 for u ≤ uc = 0·04,

σ0u
ñ for u > uc.
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Figure 3. Simulation of a sedimentation experiment [38] with initial concentration u0 = 0·05 and numerical
parameters �x = L/300, θ = 0.5 and CFL = 0·98. The symbols correspond to the measured and the solid lines
to the simulated iso-concentration lines.

where v∞ = −4·4 × 10−6 [m/s] and σ0 = 2·1379 × 107 [Pa]. The value uM is the local
maximum of the expression (1 − u)3/(b1 − b2u). The linear denominator b1 − b2u comes
from a corresponding approach for the Kozeny coefficient (see [41]). For the materials used in
the experiment, the constants b1 = 12, b2 = 32·5 and hence u∞ ≈ 0·3692 and uM ≈ 0·0538
were found to be suitable [42]. The coefficients in the expression for u ≤ uM, a2 = −28·5004
and a1 = 3·0693, have been determined in such a way that fbk is continuously differentiable.
Since fbk is also monotone, we obtain here f EO

bk (un
j , u

n
j+1) = fbk(u

n
j+1). To make an explicit

representation of the integrated diffusion coefficient A(u) possible, we replace the exponent
ñ = 6·944 determined in [42] by an integer n, e.g. n = 7, and obtain

A(u) =




0 for u ≤ uc,

A1(u)−A1(uc) for uc < u ≤ uM,

A1(uM)−A1(uc)+A2(u)−A2(uM) for uM < uc < u∞,

where

A1(u) = −v∞σ0n

�5g

(
a2

n+ 1
un+1 + a1

n
un

)
,

A2(u) = − v∞σ0n

�5gb1

[
(3u∞ − 3u2∞ + u3∞)un−1

n− 1
+ (u2∞ − 3u∞)un

n
+ u∞un+1

n+ 1

+un−1
∞ (u∞ − 1)3

{
n−2∑
j=1

(
n− 2
j

)
((u/u∞)− 1)j

j
+ ln |(u/u∞)− 1|

}]
.

In Figures 4 and 5, we show numerical solutions calculated for the initial concentrations
u0 = 0·052, 0·072 and 0·112 with the parameters J = 300, θ = 0·5 and CFL = 0·98. The
values of u0 correspond to the initial concentrations prepared in Holdich and Butt’s settling
experiments [41]. Figure 4 shows the simulated and some of the measured iso-concentration
lines (t vs. x plots), while Figure 5 depicts the solutions as concentration profiles for selected
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times (u vs. x plots). Perhaps with the exception of the case u0 = 0·112, we observe good
agreement of experimental and measured data. This is, of course, mainly due to the care
that has been applied in the determination of the function fbk(·). In fact, Holdich and Butt
[41] present numerical simulations for the cases u0 = 0·052 and u0 = 0·112 where the
agreement is of similar quality. However, their solution technique is based on a different model
formulation, and it is unclear whether their finite differencing admits type degeneracy.

Furthermore, we emphasize that the model function fbk(·) used in this numerical example
does not satisfy the assumptions of the mathematical analysis since it has a singularity at
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u = u∞. Nevertheless, the presence of the diffusion term makes it possible to determine
numerical solutions to Problem A with this flux density function.

4.2.3. Simulation of continuous sedimentation
We consider the model functions (52) and (53) with the parameters v∞ = −1·98×10−4 [m/s],
C = 5.647, umax = 0·3, uc = 0·1, σ0 = 5·7 [Pa] and n = 9, which approximate the model
functions determined for a suspension of calcium carbonate, see [39, 43].

We assume that the sedimentation vessel, an Ideal Continuous Thickener (ICT) [44] of
height L = 2 [m], is initially empty, i.e., we set u0 ≡ 0. At x = 1, we prescribe the feed
flux �(t) = −8·55 × 10−7 [m/s] for 0 ≤ t ≤ 200000 [s]. We assume that the vessel is kept
closed (q = 0), such that the ICT starts to fill up, until either t = 45000 [s] is reached or
the concentration at x = 0 reaches the value u(0, t) = 0·171. At that moment, the vessel
is opened, and we set q(t) = −5·0 × 10−6 [m/s] until t = 200000 [s]. Since now �(t) =
0·171× q(t), that is, the feed flux equals the discharge flux, the concentration profile assumes
a steady state (see [45] for a detailed discussion of steady states).

At t = 200 000 [s] we wish to change to a different steady state, characterized by the
discharge concentration u(0, t) = 0·201, q(t) = −1·5× 10−6 [m s−1] and the corresponding
feed flux �(t) = 0·201× q(t) = −3·015× 10−7 [m s−1]. Since this steady state corresponds
to a higher sediment level, we set �(t) = −3·015 × 10−7 [m s−1] for 200 000 [s] < t ≤
730 000 [s], but close the thickener (and thus produce an increase of the bottom concentration
as well as a rise of the sediment level) until the desired discharge concentration u(0, t) =
0·201 is reached. At that moment (roughly, at t = 470 000 [s]), q(t) is changed from zero to
the appropriate value q(t) = −1·5× 10−6 [m s−1], such that the concentration profile slowly
attains the next desired steady state.

Finally, at t = 730 000 [s], we decide to empty the ICT. Therefore the feed is stopped,
i.e., we set �(t) = 0 for t > 730 000 [s], but the value of q(t) is not changed. We observe
that the sediment level decreases at nearly constant speed, until all solids have left the ICT at
t ≈ 1 170 000 [s]. The simulation ends at T = 1 200 000 [s], which corresponds to roughly
two weeks.

Figure 6 shows the iso-concentration lines corresponding to this simulation. Particular
attention should be drawn to the fact that, in accordance with experience from engineering
practice, the simulation illustrates that thickener operations with flocculated suspensions take
place extremely slowly. This is due to the large time scale associated with the consolidation
process. On the other hand, changes of the feed flux propagate very rapidly into the ICT as
discontinuities or rarefaction waves in the hindered settling zone.

It should be commented that modelling continuous sedimentation as an initial-boundary-
value problem (as proposed first by Petty [46] and Bustos et al. [47]) represents a strong
simplification, since it is assumed that solids always travel downwards from x = 1. In practice,
however, we will observe in many situations that solid flocs travel upwards from the feed level,
entering the clarification zone. In that zone, the bulk flow of the mixture is directed upwards
towards an overflow outlet. Consequently, an improved formulation of a continuous thickener
should also include a clarification zone and be based on a discontinuous (with respect to x)
flux function and a source term for the feed mechanism. The feed mechanism is then described
by an additional source term. For the simpler case σe ≡ 0, corresponding to Kynch’s theory
[34], such thickener-clarifier models have been investigated by Diehl in a series of papers (see
e.g. [48, 49, 50]).
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5. Conclusions

In this paper, we have described a class of finite-difference schemes for initial-boundary-value
problems of a strongly degenerate parabolic equation arising from the phenomenological the-
ory of sedimentation-consolidation processes. We have shown that these schemes approximate
the correct (entropy) solution of these problems, and that they can be employed to efficiently
simulate batch and continuous sedimentation processes of flocculates suspensions.

The comparisons with experimental results are perhaps not so much a credit to the perfor-
mance of the numerical schemes, rather than to the mathematical model: degenerate parabolic
equations are the right extension of Kynch’s well-known kinematical sedimentation theory
[34], which leads to the first-oder conservation law (51) and hence is unable to predict curved
iso-concentration lines in the sediment layer.

Finally, this paper has highlighted the value of theoretical investigations related to existence
and uniqueness questions for practitioners in the mentioned engineering applications. It has
pointed out that no particular difficulties occur by combining two different mechanisms, that
of sedimentation and that of compression, into one single field equation with a degenerating
and even discontinuous coefficient. The formulation of the numerical scheme to solve this,
which might be employed as a simulator for parameter identification, is rather straightforward.
However, the mathematical analysis of the initial-boundary-value problem was necessary to
prove that it indeed approximates the right weak, i.e. entropy solution. As is very clearly
shown in [5, 16], this is not the case with similarly natural discretizations that work well for
strictly parabolic equations with smooth coefficients, but that fail to converge to the right weak
solution in the strongly degenerate discontinuous case.

One of the consequences of the mathematical and numerical analysis outlined here is that
no special consideration of the evolving supernate-suspension and suspension-sediment inter-
faces or local data analysis is necessary for the simulation of the sedimentation-consolidation
process. This sharply contrasts with different, more complicated treatments such as that in
[51]: the authors of that paper essentially use the same model as that outlined in this paper,
but use separate solution procedures for the hyperbolic and the parabolic compression part,
which requires a manual graphical procedure, based on the frequent a priori assumption that
characteristics emerge tangentially from the type-change interface, i.e. the sediment level.
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